The synapses that horizontal cells make with receptors are likewise unusual, lacking the electron-microscopic features that would normally tell us which way the information is conveyed. It is clear that receptors feed information to horizontal cells through excitatory synapses because horizontal cells, like receptors, are in most cases hyperpolarized, or turned off, by light. It is less clear where the horizontal cell sends its output: in some species such as turtles we know that they feed information back to receptors; in other species they make synapses with the dendrites of bipolar cells and doubtless feed into them; in primates we do not have either type of information. In summary, horizontal cells get their input from receptors; their output is still uncertain, but is either back to receptors, or to bipolar cells, or to both. The relatively wide retinal area over which receptors supply horizontal cells suggests that the receptive fields of horizontal cells should be large, and they are. They are about the size of the entire receptive fields of bipolar cells or ganglion cells, center plus surround. They are uniform, giving hyperpolarization wherever you stimulate, and more hyperpolarization the larger the spot. Much evidence points to the horizontal cells as being responsible for the receptive-field surrounds of the bipolar cells--indeed they are the only plausible candidates, being the only cells that connect to receptors over so wide an expanse. When horizontal cells connect directly to bipolars, the synapses to on-bipolars would have to be excitatory (for the effect of light in the surround to be inhibitory) and those to off-bipolars, inhibitory. If the influence is by way of the receptors, the synapses would have to be inhibitory. To sum this up: Bipolar cells have center-surround receptive fields. The center is supplied by direct input from a small group of receptors; the surround arises from an indirect path stemming from a wider expanse of receptors that feed into horizontal cells, which probably feed into the bipolars. The indirect path could also be the result of the horizontal cells feeding back and inhibiting the receptors.